CAPS Activities during and around Saturn Orbital Insertion

SOI timeline:

- Start of quiet period: 91.59 R_S June 23 00:00
- Ascending ring plane crossing (ARPX): 2.61 R_S July 1, 00:49
- Start of SOI burn: 2.38 R_S July 1, 01:04
- Periapsis (23,700 km above ring plane): 1.33 R_S July 1, 02:39
- End of SOI burn (97 min. duration): 1.33 R_S July 1, 02:41
- Turn to Earth (est.): 1.48 R_S July 1, 03:11
- Start of post SOI science: $\sim1.5 \text{ R}_S$ July 1, 03:15
- Descending ring plane crossing (DRPX): 2.63 R_S July 1, 04:35

Quiet period restrictions:

- Spacecraft pointed with $-Z$ to Earth, $+X$ to north ecliptic pole until ARPX
 - Places corotation well inside CAPS field of view for entire period
- Instruments must use less than allocated power (21 W for CAPS)
 - Decreases and variability in power use are ok, peak must be below limit
- No software modifications
- Instruments may execute internal sequences (IEBs) started prior to June 23 00:00
 - Instruments may lower high voltages prior to SOI burn using internal sequence
- No real-time commands
 - This probably includes response to anomalies
- Data may be downlinked until SOI–29 hours
- Only one SSR may be used to record data

SOI burn and CAPS high voltages

- The R–4D main engine produces 148 g/s of various neutrals
 - Mostly water and nitrogen
- SOI burn lasts 97 min.
- No modeling of the spacecraft environment has been done
 - Two studies of near field (backup engine) & optical instrument contamination
- Pressure near CAPS would be orders of magnitude less than $6 \times 10^{13} \text{ cm}^{-3}$
 - Not a useful upper limit: Safe values $\sim 10^{10}$ (few $\times 10^{-7}$ Torr)
- Will this cause the 14.5 kV high voltage to arc?
 - Will this cause arcing with the voltage at 12 kV (sleep level)?

Post SOI observations

- Sleep mode during SOI conflicts with normal IMS science after SOI
 - HVU1 at 12 kV
 - We currently require 2 hours 15 minutes to raise it to 14.5 kV
 - ELS and IBS are turned on in 6 and 8.5 minutes
 - ST and LEF MCP voltages are turned on in 25–30 minutes
- End of SOI to DRPX is the only opportunity for most CAPS rings–related goals
 - This period is ~ 1 hour 20 minutes long
- IMS can operate and take data at 12 kV
 - Lower sensitivity & mass resolution
 - Shift in TOF peak & shape \Rightarrow SAM will not produce viable Ion data
CAPS Activities during and around Saturn Orbital Insertion
Suggestions by F. Crary are highlighted

Pre−SOI quiet options:
1. **Operate normally**
 - Real time commanding may not be possible, even for an anomaly
 - CAPS has been operating since Sept. 2000 without serious anomalies
 - Worst case (?) is ending up in reset w/out replacement heater for 8 days
 - Thermal issues for ELS?
 - Would it be safe to actuate?
2. Turn off

SOI burn options:
1. Leave HVU2 at 14.5 kV and take data
 - Risks arcing and pulling HVU2 down from 14.5 kV
 - S/c anomaly response (if it turns CAPS off) takes HVU2 down immediately
 - Allows us to operate normally after burn
2. **Turn HVU2 down to 12 kV and take data**
 - Quality of IMS data reduced
 - ELS and IBS operate normally
 - Should we stop the actuator?
3. Go to sleep

Options 2 and 3 limit post−SOI science
When should we change mode? Just before ARPX?
Is 12 kV a safe voltage? Should we reduce it further?

Post−SOI options:
1. Operate normally (if HVU2 was at 14.5 kV during burn)
2. **Operate with HVU2 at 12 kV (if HVU2 was at 12 kV or in sleep during burn)**
3. Turn HVU2 from 12 kV to 14.5 kV in < 30 min (more than 4x faster than usual)
 What is the minimum time to turn CAPS on?
 - Can IBS & ELS voltages go up at the same time?
 - Can the LEF and ST MCPs voltages go up at the same time?