| Theme | Topic | Summary of topic | Other team members | |---------------------------|--|--|---| | Saturn
Crary | Ionosphere
Crary | Composition and distribution of particles originating from the ionosphere | Goldstein, Reisenfeld, Hill,
Sittler, Sezgo, Coates, Rymer,
Gosling | | | Aurora
Crary | Auroral acceleration,
precipitation and related
phenomena | McComas, Reisenfeld, Hill,
Sittler, Coates, Rymer,
Vilppola | | | SKR
Bolton | Generation of Saturn Kilometric Radiation | Crary, Hill, Sittler, Coates | | Magnetosphere
Hill | Boundaries & Structure Steinberg | Magnetospheric external and internal boundaries, structures and plasma domains | Crary, Goldstein, Thomsen,
McComas, Reisenfeld, Hill,
Sittler, Szego, Coates, Rymer,
Svenes, Vilppola, Gosling | | | Microphysics
Thomsen | Microphysics of the bow
shock, magnetosheath,
magnetopause and
magnetotail | Crary, Hill, Sittler, Szego,
Coates, Vilppola, Gosling | | | Dynamics
Thomsen | Magnetospheric dynamics
driven by solar wind,
internal rotation, substorms,
radial transport, and mass
loading | Crary, McComas, Hill, Sittler,
Szego, Berthelier, Coates,
Rymer, Vilppola,
Steinberg, Gosling | | | Survey
Berthelier | Magnetospheric survey:
Global density, ion
composition, etc. | Crary, Goldstein, Thomsen,
Johnson, McComas,
Reisenfeld, Hill, Coates,
Vilppola, Gosling | | Titan Coates | Composition
Young | Composition of Titan's ionosphere, exosphere and atmosphere | Coates, Reisenfeld, Sittler,
Szego, Berthelier, Rymer,
Vilppola, Barraclough,
Gosling | | | Response of Magnetosphere Sittler | Reaction of Saturn's magnetosphere to Titan induced phenomena | Crary, Johnson, McComas,
Hill, Baragiola, Szego, Coates
Rymer, Svenes, Vilppola,
Gosling | | | Structure of interaction region Reisenfeld | Structure of Titan's upstream, bow shock, wake, and flux tube interaction regions | Crary, Sittler, Szego, Coates,
Rymer, Vilppola, Steinberg,
Gosling | | Icy satellites
Sittler | Composition
Johnson | Composition of satellite exospheres and surfaces | Funsten, Goldstein, Hill,
Sittler, Coates, Tokar,
Gosling, Baragiola | | | Response of Magnetosphere Crary | Interaction of the magnetosphere with icy satellite surfaces and exospheres | Funsten, Johnson, McComas,
Hill, Baragiola, Szego,
Berthelier, Coates, Rymer,
Steinberg, Gosling | | | Structure of interaction region Coates | Structure of upstream and wake regions | Crary, Funsten, Steinberg,
Gosling | | Rings
Reisenfeld | Composition
Johnson | Composition of the ring exosphere and ring particle surfaces | Funsten, Goldstein, Johnson,
Reisenfeld, Sittler, Coates,
Rymer, Baragiola | | | Ring/magnetosph ere interaction Coates Ring/ionosphere | Ring/magnetosphere interactions, dusty plasmas, and ring particle dynamics Interactions of ring plasma | Crary, McComas, Reisenfeld,
Hill, Baragiola, Sittler, Sezgo,
Rymer, Gosling
Funsten, Reisenfeld, Hill, | | | interaction
Coates | with Saturn's ionosphere | Sittler, Berthelier, Coates,
Rymer | ## 1) <u>Table 2. Duties of theme and topic leaders and team participants</u> - Theme leaders (with assistance from topic leaders): - o A theme leader may also be a leader for one of the science topics - o Coordinate science and measurement objectives among topic leaders - o Coordinate science and measurement objectives with theme leaders - o Provide oversight of achievement of theme science objectives - Topic leaders (with assistance from topic team members): - Science planning: - Establish a team interested in the selected topic - Identify detailed science objectives & measurements - Identify any other contributions to measurements - Define measurement requirements (times, locations, modes) - Input requirements to ECARS - Review output from science planning process - Make revised input to ECARS - o Data analysis: - Coordinate selected periods for study - Coordinate data needed for study - Organize and track studies - Organize science feedback to planning team for future measurements - Track presentations and publications - Report progress on studies at team or PSG meetings - Topic team members: - Have an interest in contributing to or leading scientific studies using CAPS or other data - o Be willing to support the topic team and leader